The film is about fractal geometry. Someone calls fractal geometry 'the natural dynamics of everything' (a video title, 2011, available at https://www.youtube.com/watch?v=yUM7e0tIFi0). Why? Because it explains the shapes of everything in the nature: why the British coastline looks like that, why mountains looks like that, why the trees look like that, why the vessels in the body look like that, ect., etc..
Fractal geometry was invented by Benoit Mandelbrot from 1950. In general, it is a combination of classical geometry (coined by Euclid) and algorithm. The most famous fractal - The Mandelbrot Set - derives from a circle and a generating function 'f(z) = z^2 + c'. (For more knowledge, visit http://mathworld.wolfram.com/MandelbrotSet.html)
In reflection, fractal geometry could help us to understand the underlying order governed by simple mathematical rules. According to this theory, there must be a rule that governs the formation of the nature and all the living things/creatures. Perhaps the rule is set by the God. God is simple, straightforward and God seems not encountered complex things, thus God create everything as they assumed to be. A significance of fractal geometry might be that it finds out the rules of the nature, which implies that the nature is possibly created and ruled by something. So far, we may easily shift our thoughts to another interesting invention in the 20th century - the Artifical Intelligence. With the emergence of computer, multiple complex things can be handled by computer programming. Some people may say, artificial intelligence is God. (see http://www.artificialintelligenceisgod.com/index3.html) If science explains the world created by God, then technology is the 'new God' that changes the existing world. Is it? If it is so, then there must be a number of Gods that mobilize the evolutions of all things in our history. On the other hand, however, like technology is rooted in science, science is rooted in the nature, and evolutions of all things are rooted in the earliest forms and the evolution of a certain thing follows a common rule. Therefore, this question seems unanswerable by philosophy of science, except acknowledging the existence of God. So I just want to stop here.
Drawing on the former argument, fractal geometry could help us to understand the underlying order governed by simple mathematical rules, I have another question: is this process reversible, i.e., could the setting of rules help generate complex ideal orders? In my own field, urban planning and design, I acknowledge that some scholars have studied how, or if it is possible, a set of simple rules may generate ideal urban form (Alexander, 1966; Marshall, 2009). However, city is formed by both controllable and uncontrollable, visible and invisible forces. And the urban form becomes more and more complex, and the urban problems continuously emerge with the increasing complexity of our society. In my view, the study of ideal urban forms, no matter by what means, is something similar to the system dynamics mentioned by Meadows et al. in their book 'The Limits to Growth' - a game of idealism.
空城
6 April, 2014
Film available at https://www.youtube.com/watch?v=s65DSz78jW4 ;